

Which Antibiotics will work and which not in neonatal sepsis in INDIA ????

Real case scenario..

Referred by: Sample:	Spa Blo	arsh Hospit od	al				Age/Sex: Date: Ref. No.	(10- MH	Sep-14		
Culture Examination			121	*							
Organism isolated:	Ese	cherichia d	oli		-	-					
Phenotype:	am	D C-& ESE	l pror	luction	Positiv	.)		© Dr	Mansi U.	shah	
Antibiotic Sensiti	vitv		-	uouon		/		from	Port I		
		Zone of	Linter	1	1		Zone of	Leven	1	1	
Antibiotic		Inhibition	preta	MIC	Choice	Antibiotic	Inhibition	preta	MIC	Choice	
Panicilline		tound	uon	(hðwin)	group	Carbonana 8 Ma	((mm)	tion	(hð/mi)	group	2
Ampicillie			D			Carbapenems & Mo	nobactum:	R	11		
Amoxycillin			P	232		Maranan	23	10)	54	18	
Piporacillin	-		P	232	-	Cweropenem	23	15/	54	18	
Conhalosoorine		-	R	×128	-	Decinement	23	8	54	18	
Cenhalevia		-	R		101	Aminoatusesides		-	St all		
Cofedravil		17.	P	1 10 10	- Mar	Aminogrycosides Conteminin		D			
Cofacior	-		P	~~~	1	Tobramuela	the states	R	28	1 1 1	nnr
Cofuravima svatila	1		D	232		Netileie	-	R	28		
Cofezolio		1000	P	232	1	Neomia		R	232		
Cefoodoxime		200	R	e32	1.5	Amikasio	-	P			
Ceforozil	- in	1	R	120		Kananucin		P	2.52		
Cefotavima	1977		R	232	1000	Eluoroguinolonon	-	R	225		
Ceftriaxone			R	264		Ciprofibyacio		P			
Ceftizoxime			R	312		Ofiovacio	1	P	24	-	
Ceftazidime		10.00	R	202		Levellevacio	1	P	28		5.
Cefixime		TY III	R	24	ST THE	Gemifinyacin	-	P	28		14
Cefoperazone	1301	-	R	204		Moxyfloxacio		P			2
Celnirome		1.1	R			Paulificyacia		P			
Cefenime			R	232	IS IT	Sparfloyacin	12121	P			
Combinations			14.			Pazufloxacin		R			
Ampicillin+Sulb		1120 - 10	R	232/18	1.00	Nalidixic acid		R			
Sultamicillin		3.2 12 1	R		1	Miscelaneous	100000				
Amoxycillin+clay	- 11-	1.11.4	R	>16/8	1	Doxycycline		R	10		
Piperacillin + Tazo	2.40		R	>128/4		Azithremycin	1	R	8.0		2
Cefotaxime + Sulh	•	10.000	R		0.0	Chloramphenicol	20 '	S	10	2	f
Cefoperazone+Sulb		122211	R	0.11	1.	Polymyxin B	12	s		2	
Ceftriaxone + Sulb		1	R	Tat a set	1	Cotrimoxazole	16	R	R(152	100	
Cefepime + Tazo		16	1	100	12.00		-				
Ceftazidime + Tazo		1.05	R		VASA	Tigecycline	26	SA	2.2	2	
Ceftriaxone + Tazo		200	R		10000	Colistia	12	6		2	
	-	S - Sensitiv	e		I - Interm	ediate	B - Resistant	FT		and the second second	0
Group 1A. Group 1B. Group 2. Note:	Prima Prima Can b > Prop	rily used in un rily used in co e used suppler per selection of the clinical	ncomplicate omplicate mentary of antibio	ated infec ed and resi only in co tic can on	tion. istant infect inplicated in ly be done	tion. and resistant infection. by the clinicians according	to				

Sample:	Sparsh Hospit Blood	tal				Date: Ref. No.	,	16-Sep-14 MH - 1482	
Culture Examination Organism isolated:	Klebsiella pn	eumo	niae					1.2.10	
Phenotype:	KPC (Klebsie	ella pr	neumoni	ae Cart	papenemase) strain		0	Dr. Mansi U.	sh
Antibiotic Sensiti	vity:						4		-
Antibiotic	Zone of Inhibition	Inter	MIC	Choice	Antibiotic	Zone of Inhibition	Int	er Ita MIC	
Depielling	(min)	uon	(pg/mi)	group		(mm)	tio	n (pg/mi)	12
Ampiellin		D	1		Carbapenems & Mo	nobactum:	-		-
Amplant		R	232		Impenem	10	R	28	1
Diperacillin		R	232	-	Meropenem	16	R	28	
Cenhalosoorins		R	2128		Decleanem	16	R	85	
Cephalexin		D	-		Donpenem	12	R		-
Cefsdrovil		R			Aminoglycosides		0	-	
Cofacios		B			Gentamicin	-	- n	28	11.0
Cefurovima avetile		P	232		Netimicie	-	R	28	
Cefazolin		D	232		Neomicin		n	2.32	
Cefnodovime		P	232		Amikacin		D		
Ceforozil		P	20		Kanamusin		P	232	
Cefotavime		P	202		Eluoroguinolones		K	225	-
Ceftriaxone		R	204		Ciprofloxacio		P		
Ceftizoxime		R	222	1	Oflovacia		P		
Ceftazidime		R	>32		Levofloxacin	1	R	28	
Cefixime		R	24		Gemiflovacio	1	P		
Celoperazone		R	204		Moxyfloxacin		P		
Celpirome		R			Prulifloyacin	1	R		-
Cefepime		R	232		Sparfloxacin		R		
Combinations				1	Pazufloxacin	1.000	R		
Ampicillin+Sulb.		R	≥32/16		Nalidixic acid	16	R		
Sultamicillin		R		1	Miscellaneous				
Amoxycillin+clav.		R	216/8		Doxycycline		R	≥16	
Piperacillin + Tazo.		R	2128/4		Azithromycin		R		
Cefotaxime + Sulb.		R			Chloramphenicol	26	S	58	-
Cefoperazone+Sulb.		R			Polymyxin B	12	S		1
Ceftriaxone + Sulb.		R			Cotrimoxazole		R	28/152	
Cefepime + Tazo.		R							
Ceftazidime + Tazo.		R			Tigecycline	26	S	1000 C	2
Ceftriaxone + Tazo.		R			Colistin	12	S		2
	S - Sensitive		1.	- Interme	diate	R - Resistant	-		

patient's clinical condition.

"I've had the struggle of living with a resistance to antibiotics for nearly eight years of my life...there is a clear need for new antibiotics."

"With every sting and every pain, my heart sinks at the thought of how many antibiotics I have left to use this time.

Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis <u>Lancet 2015; 385: 430–40</u>

	Number of deaths (UR; millions)
Neonates aged 0–27 days	
Preterm birth complications	0.965 (0.615-1.537)
Intrapartum-related complications	0.662 (0.421-1.054)
Sepsis	0.421 (0.269-0.688)
Congenital abnormalities	0.276 (0.175-0.438)
Other disorders	0.232 (0.145-0.373)
Neonatal pneumonia*	0.136 (0.084-0.219)
Tetanus	0.049 (0.032-0.079)
Neonatal diarrhoea†	0.020 (0.012-0.033)
Children aged 1–59 months	
Other disorders	0.967 (0.781-1.134)
Pneumonia*	0.800 (0.681–0.923)
Diarrhoea†	0.558 (0.429-0.731)
Malaria	0.456 (0.351-0.546)
Injury	0-324 (0-258-0-391)
Meningitis	0.151 (0.125-0.185)
AIDS	0.103 (0.076-0.142)
Measles	0.102 (0.074-0.166)
Pertussis	0.060 (0.043-0.094)

UR=uncertainty range. *Estimated number of pneumonia deaths in children younger than 5 years overall including the neonatal period is 0-935 million (UR 0-817-1-057 million; 14-9%, UR 13-0-16-8). †Estimated number of diarrhoea deaths in children younger than 5 years overall including the neonatal period is 0-578 million (0-448-0-750 million; 9-2%, 7-1-11-9).

Table: Estimated numbers of deaths by cause in 2013

Indian J Pediatr. 2011 Apr;78(4):409-12. doi: 10.1007/s12098-010-0272-1. Epub 2010 Oct 17. Aetiology and antimicrobial resistance of neonatal sepsis at a tertiary care centre in eastern India: a 3 year study.

Neonatal Sepsis: High Antibiotic Resistance of the Bacterial Pathogens in a Neonatal Intensive Care Unit of a Tertiary Care HospitalNosocomial Infections in Neonatal Intensive Care Units: Profile, Risk Factor Assessment and Antibiogram Saritha Kamath, Shrikara Mallaya and Shalini Shenoy

Department of Microbiology, Kasturba Medical College, Mangalore, Karnata

RIOLOGICAL AI ERN AMONG VAR NEONATAL SEPTICEM OF AHMEDABAD

Sanjay D Rathod¹, Palak V Bhatia², Parir

Indian J Med Res. 2008 Jan;127/1

Gran negative organisce C beta-lactamases & susceptibility to **Occurrence of ES** agents in complicated UTI. newer antimicrobi

<u>Taneja N¹, Rao P, Arora J, Dogra A.</u>

Indian J Pediatr. 2011 Apr;78(4):409-12. doi: 10.1007/s12098-010-0272-1. Epub 2010 Oct 17.

Actiology and antimicrobial resistance of neonatal sepsis at a tertiary care centre in eastern India: a 3 year study.

Viswanathan R¹, Singh AK, Mukherjee S, Mukherjee R, Das P, Basu S

Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, $2008-2014^{*}$

Sumanth Gandra^a, Nestor Mojica^a, Eili Y. Klein^{b,c}, Ashvin Ashok^b, Vidya Nerurkar^d, Mamta Kumari^d, Uma Ramesh^d, Sunanda Dey^d, Viral Vadwai^d, Bibhu R. Das^d, Ramanan Laxminarayan^{a,e,f,*}

Carbapenem resistance trends among multiple organisms in India, 2008–2014 Conclusion: Increasing resistance to antibiotics of last-resort, particularly among Gram-negatives, suggests an urgent need for new antibiotics and improved antimicrobial stewardship programs in India.

Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study

Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration*

	Total sepsis	Culture-positive sepsis	Culture-negative sepsis	Meningitis
Incidence*				
Overall (n=13 530)	1934 (14·3%; 13·8–14·9)	840 (6·2%; 5·8–6·6)	1094 (8·1%; 7·6–8·6)	200 (1.5%; 1.3-1.7)
Site 1 (n=9239)	1237 (13·4%; 12·7–14·1)	502 (5·4%; 5·0-5·9)	735 (8.0%; 7.4-8.5)	119 (1·3%; 1·1–1·5)
Site 2 (n=2657)	502 (18-9%; 17-4-20-4)	279 (10·5%; 9·4–11·7)	223 (8·4%; 7·4–9·5)	67 (2.5%; 1.9-3.2)
Site 3 (n=1634)	195 (11·9%; 10·4–13·6)	59 (3·6%; 2·7-4·6)	136 (8·3%; 7·0–9·8)	14 (0.9% 0.5-1.4)
Incidence density†				
Overall (n=80 427)	1980 (24-6; 23-6-25-7)	847 (10.5; 9.8-11.3)	1133 (14-1; 13-3-14-9)	200 (2.5; 2.2-2.8)
Site 1 (n=42 419)	1246 (29·4; 27·8–31·0)	502 (11.8; 10.8–12.9)	744 (17-5; 16-3-18-8)	119 (2-8; 2-3-3-3)
Site 2 (n=21342)	517 (24·2; 22·2-26·4)	281 (13·2; 11·7–14·8)	236 (11·1; 9·7–12·5)	64 (3.0; 2.3-3.8)
Site 3 (n=16 666)	217 (13-0; 11-3-14-8)	64 (3·8; 2·9–4·9)	153 (9·2;7·8-10·7)	14 (0.8; 0.4-1.4)
Case fatality rate‡				
Overall	496/1934 (25.6%; 23.7-27.7)	400/840 (47-6%; 44-2-51-0)	96/1094 (8.8%; 7.2-10.6)	102/200 (51.0%; 43.8-58.1)
Site 1	248/1237 (20.0%; 17.8-22.4)	200/502 (39.8%; 35.5-44.3)	48/735 (6.5%; 4.8-8.6)	45/119 (37·8%; 29·1–47·2)
Site 2	226/502 (45·0%; 40·6–49·5)	188/279 (67-4%; 61-5-72-8)	38/223 (17:0%; 12:3-22:6)	56/67 (83·6%;72·5-91·5)
Site 3	22/195 (11·3%;7·2-16·6)	12/59 (20-3%; 11-0-32-8)	10/136 (10·4%; 3·6–13·1)	1/14 (7·1 %; 0·2–33·8)

* Among those admitted to neonatal intensive care. Data are number of cases (%; 95% CI). †Data are number of episodes, (number of episodes per 1000 patient-days; 95% CI). ‡Data are number of deaths/number of cases (%; 95% CI).

	Number of isolates (n=1005)	Number of deaths (case fatality rate)
Gram negative		
Acinetobacter spp	222 (22%)	130 (59%)
Klebsiella spp	169 (17%)	95 (56%)
Escherichia coli	137 (14%)	83 (61%)
Pseudomonas spp	68 (7%)	53 (78%) 🖌
Enterobacter spp	44 (4%)	16 (36%)
Gram positive		
Coagulase-negative staphylococci	150 (15%)	40 (27%)
Staphylococcus aureus	122 (12%)	43 (35%)
Enterococcus spp	56 (6%)	33 (59%)
Group B streptococci	8 (1%)	5 (62%)
Others	29 (3%)	13 (45%)

Data are n (%). See appendix for further details on meningitis and central line associated bloodstream infection.

Table 3: Profile of bacterial isolates and their case fatality rates

Organism name	Overall (n=1005)	Site 1 (n=576)	Site 2 (n=359)	Site 3 (n=70)
Acinetobacter spp.	222 (22 · 1%)	155 (26·9%)	, 62 (17·3%)	5 (7·1%)
Klebsiella spp.	169 (16.8%)	67 (11.6%)	89 (24.8%)	13 (18.6%)
CoNS	150 (14.9%)	90 (15.6%)	28 (7.8%)	32 (45·7%)
E. coli	137 (13.6%)	64 (11.1%)	69 (19·2%)	4 (5·7%)
Staphylococcus aureus	122 (12.1%)	88 (15.3%)	29 (8.1%)	5 (7.1%)
Pseudomonas spp.	68 (6.8%)	10 (1.7%)	50 (13.9%)	8 (11.4%)
Enterococcus spp.	56 (5.6%)	33 (5.7%)	22 (6.1%)	1 (1.4%)
Enterobacter spp.	44 (4·4%)	41 (7.1%)	2 (0.6%)	1 (1.4%)
Streptococcus spp.	12 (1.2%)	10 (1.7%)	2 (0.6%)	0
GBS	8 (0.8%)	8 (1.4%)	0	0
Candida spp.	7 (0.7%)	4 (0.7%)	2 (0.6%)	1 (1.4%)
Others	10 (1.0%)	6 (1.0)	4 (1.1%)	0

NB: For multiple isolates detected from a single episode, we used the following rules:

- · If single culture was sent and it grew two organisms, both organisms were included.
- If multiple cultures were sent, and same organism was isolated in all, only the first organism was included.
- If multiple cultures were sent, and different were organisms isolated, all organisms were included.

Webtable 11: Pathogen profile by site

	Number of resistant isolates	CFR in culture- positive sepsis due to resistant pathogens	CFR in culture- positive sepsis due to sensitive pathogens
Gram positive			
Coagulase-negative	e staphylococci (n=1	.50)	
Meticillin	85/140 (61%)	23/85 (27%)	14/55 (25%)
Vancomycin	0/138	- ··	36/138 (26%)
Staphylococcus aure	us (n=122)		
Meticillin	43/114 (38%)	16/43(37%)	22/71 (31%)
Vancomycin	0/114		38/114 (33%)
Enterococcus spp (n	-56)	7	
Meticillin	11/14 (79%)	10/11 (91%)	2/3 (67%)
Vancomycin	13/48 (27%)	9/13 (69%)	20/35 (57%)

Data are n/N (%); there are variations in denominators in few cells as antibiotic sensitivity testing for all drugs was not done. CFR=case fatality rate. ES=expectrum. MDR=multidrug resistance (ie, I [intermediate] or R [resistand drug in three of the following classes: ES cephalosporins, fluoroquinolona aminoglycosides, carbapenems, and piperacillin-tazobactam).

- Acenatobacter most common org.
- HIGH degree of resistance to Reserve antibiotics
- Almost 50% C/S positive died
- 25% of all death were bcs of sepsis
 Mortality almost same between sensitive and resistance pathogons!!!

Nearly quarter of Acinetobacter and three quarter of Klebsiella showed NDM-1 in pool of carb. Resistance strain

Early occurrence of Sepsis (most episodes occurred with in 72 hrs)

- Quarter of culture positive episodes occurred with in 24 hrs of birth
- two third with in 72 hrs

CFR did not differ between Early or late onset

Antibiotic resistance—the need for global solutions

Ramanan Laxminarayan, PhD, Adriano Duse, MD, Chand Wattal, MD, Anita K M Zaidi, MD, Heiman F L Wertheim, MD, Nithima Sumpradit, PhD, Erika Vlieghe, MD, Prof Gabriel Levy Hara, MD, Ian M Gould, MBChB, Herman Goossens, PhD, Christina Greko, PhD, Prof Anthony D So, MD, Maryam Bigdeli, MPH, Prof Göran Tomson, MD, Will Woodhouse, Eva Ombaka, PhD, Prof Arturo Quizhpe Peralta, MD, Farah Naz Qamar, MBBS, Fatima Mir, PhD, Sam Kariuki, PhD, Prof Zulfiqar A Bhutta, PhD, Prof Anthony Coates, MD, Richard Bergstrom, MSc, Gerard D Wright, PhD, Eric D Brown, PhD, Prof Otto Cars, MD

> The Lancet Infectious Diseases Volume 13, Issue 12, Pages 1057-1098 (December 2013) DOI: 10.1016/S1473-3099(13)70318-9

Copyright © 2013 Elsevier Ltd Terms and Conditions

Worldwide geographic distribution of *Klebsiella pneumoniae*carbapenemase (KPC)

Volume 17, Number 10—October 2011

EMERGING

INFECTIOUS DISEASES

Geographic distribution of New Delhi metallo-β-lactamase-1 producers,

Volume 17, Number 10—October 2011

Verona integron–encoded metallo- β -lactamase (VIM) and IMP enterobacterial producers

oxacillinase-48 (OXA-48) type producers

Nationwide distribution of OXA-48-producing isolates

Klebsiella pneumoniae carbapenemase-2 (KPC-2

New Delhi metallo-β-lactamase-1 (NDM-1)

oxacillinase-48 (OXA-48)-producingK. Pneumoniae

Volume 17, Number 10—October 2011

Colistin: An Update on the Antibiotic of the 21st Century

Silpak Biswas; Jean-Michel Brunel; Jean-Christophe Dubus; Martine Reynaud-Gaubert; Jean-Marc

Rolain

Expert Rev Anti Infect Ther. 2012;10(8):917-934.

Mechanism of polymyxin resistance	Bacteria	Ref.
LPS alteration	Escherichia coli, Salmonella, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii	[86,91,94– 96,98,104,105,120,213]
Mutations in the <i>pmr</i> A and <i>pmr</i> B genes and two-component signaling proteins	A. baumannii	[86, 104, 105, 120]
Mutations in <i>lpxA</i> , <i>lpxC</i> and <i>lpxD</i> induces loss of the lipid A component of lipopolysaccharide	A. baumannii	[102,103]
Role of OprH, an outer membrane protein altered	P. aeruginosa	[106,111,214]
Changes in negatively charged surface LPS induced by the regulatory loci <i>pmrA</i> and <i>phoP</i>	Enterobacteriaceae	[54]
Resistance by mutation in <i>pmrA</i> and <i>PmrB</i> genes	Salmonella	[119,215]

Study (year)	Organism (n)	Polymyxin studied	Method	Drug combined	Synergy	Ref.
Liang <i>et al.</i> (2011)	Acinetobacter baumannii (14)	Colistin	Time-kill study	Meropenem Minocycline Rifampicin	100 100 100	[168]
Sheng <i>et al.</i> (2011)	Acinetobacter spp. (17)	Colistin	Time-kill study Checkerboard	Imipenem Imipenem	75–100 42–100	[171]
Wareham <i>et al.</i> (2011)	A. baumannii (6)	Colistin	Time-kill study Checkerboard	Teichoplanin Teichoplanin	100 100	[178]
Souli <i>et al.</i> (2011)	Klebsiella pneumonia (17)	Colistin	Time-kill study	Fosfomycin	11.8	[216]
Gordon et al. (2010)	A. baumannii (39)	Colistin	Etest	Vancomycin	100	[156]
Elemam <i>et al.</i> (2010)	K. pneumonia (12)	РМВ	Checkerboard	Rifampicin Doxycycline Tigecycline	100 100 100	[162]
Pankey <i>et al.</i> (2009)	A. baumannii (8)	РМВ	Time-kill study Etest	Meropenem Meropenem	100 63	[217]
Principe et al. (2009)	A. baumannii (22)	Colistin	Checkerboard	Tigecycline	8.3	[218]
López <i>et al.</i> (2008)	Pseudomonas aeruginosa (12)	Colistin	Checkerboard	Doxycycline Rifampicin Azithromycin	66.6 16.6 25	[219]
Tan <i>et al.</i> (2007)	A. baumannii (13)	Colistin	Time-kill study	Minocycline	92	[220]
Li et al. (2007)	A. baumannii (8)	Colistin	Checkerboard	Rifampicin	100	[169]
Timurkaynak <i>et al.</i> (2006)	P. aeruginosa (5)	Colistin	Checkerboard	Rifampicin Meropenem Azithromycin	40 0 0	[221]

Colistin and Tigecycline Resistance in Carbapenem-Resistant Enterobacteriaceae: Checkmate to Our Last Line Of Defense

Mohit Kumar

Infection Control & Hospital Epidemiology / FirstView Article / April 2016, pp 1 - 2

Antibiotic resistance sweeping developing world

 $Bacteria\ are\ increasingly\ dodging\ extermination\ as\ drug\ availability\ outpaces\ regulation.$

SPREADING SCOURGE

Many countries lack reliable data to track emerging microbial threats, according to the World Health Organization. In large areas of the world, fewer than five antibiotic-resistant bacteria–drug pairs are monitored.

Antibiotic Resistance in India: Drivers and Opportunities for Action

Ramanan Laxminarayan^{1,2,3}*, Ranjit Roy Chaudhury^{4†}

- Prolonged course of antibiotics
- Undisciplined use of broad spectrum antibiotics
- Overdependence on CRP to start/stop antibiotics
- Absence of culture facilities

ESBL, MRSA,VRE Carbepenem resistance NDM -1

Antibiotic Resistance in India: Drivers and Opportunities for Action

Ramanan Laxminarayan^{1,2,3}*, Ranjit Roy Chaudhury^{4†}

50 samples from street taps — sources of drinking, washing and cooking water for entire neighborhoods and 171 samples of "seepage" (surface water and street puddles) from around New Delhi. NDM-1 in two of the drinking-water samples (4 percent) and 51 of the 171 seepage samples (30 percent).

Poor public health infrastructure, Rising income, high burden of disease, unregulated sale of antibiotics

Trends in retail sales of carbapenem antibiotics for Gram-negative bacteria

The Lancet Infectious Diseases 2013 13, 1057-1098DOI: (10.1016/S1473-3099(13)70318-9)

Antibiotic Therapy in Neonates: No prophylactic antibiotics

- Prophylactic antibiotics tried in
 - Prematurity
 - MSAF
 - All ventilated babies
 - Chest drains/ exchange etc.
- Prophylaxis
 - Increases risk of infection with Multi drug resistant pathogen
 - Predispose to antibiotic resistance

Antibiotic Therapy in Neonates: Treat infection and not colonisation

- Bacteria isolated from ET tube, catheters, long lines constitute colonization
- Do not use antibiotics for colonization
 - It is likely to increase antibiotic resistance and
 - It does not prevent systemic infection
- Growth of bacterium from normally sterile body sites such as blood, CSF, ascitic tap, pleural tap etc. suggests infection

Role of Infection Control

- Strict hand washing.- Before examining first baby a thorough hand wash with detergent soap for at least 2 min and in-between babies hand wash for 30 sec.
- Strict asepsis during any procedure.
- Periodic review of antibiotic policy in the light of culture positive reports in the previous month.
- Rotation of antibiotics
- > Periodic fumigation.

NICU policies...

- Not to admit diarrhoea patients and patients with open infected wounds in nicu.
- Isolation of culture positive septic babies.
- Restriction of visitors.
- Kangaroo mother care

Ten Point Action Plan on Antibiotic Use

- Always take blood cultures prior to start of antibiotics
- Use the narrowest spectrum antibiotics possible, almost always a penicillin and an aminoglycoside (e.g. Amikacin)
- Do not start treatment, as a general rule, with a 3rd generation cephalosporin (e.g. cefotaxime, ceftazidime) or a carbapenem (e.g. imipenem, meropenem).

Ten Point Action Plan on Antibiotic Use

- Develop local antibiotic policies to restrict the use of expensive, broad-spectrum antibiotics like imipenem for emergency treatment.
- Trust the microbiology laboratory. Rely on the blood culture results.
- Stop believing that a raised CRP means the baby is definitely septic.
- If blood cultures are negative at 2-3 days, it is almost always safe to stop antibiotics.

- Develop local antibiotic policies to restrict the use of expensive, broad-spectrum antibiotics like imipenem for emergency treatment.
- Trust the microbiology laboratory. Rely on the blood culture results.
- Stop believing that a raised CRP means the baby is definitely septic.
- If blood cultures are negative at 2-3 days, it is almost always safe to stop antibiotics.

Conclusions

- Can't predict which antibiotics will work and which will not in current scenario of MDRS organism.
- Go by org pattern and C/S sensitivity of your set up
- Prevention of sepsis has to be a priority and on war foot basis.
- Ten rule of antibiotics usage is MUST to be observed.

it's a Question of our own image as a community/country.

SPREADING SCOURGE

Many countries lack reliable data to track emerging microbial threats, according to the World Health Organization. In large areas of the world, fewer than five antibiotic-resistant bacteria–drug pairs are monitored.

Lord Jim O'Neill, who led the Review on Antimicrobial Resistance, said a campaign was needed to stop people treating antibiotics like sweets.

Deaths attributable to antimicrobial resistance every year by 2050

Latin America 392,000 4,150,000 Oceania 22,000

Source: Review on Antimicrobial Resistance 2014

Area addressed		Principles	Strategies in highly regulated, structured healthcare setting	Strategies in poorly regulated, minimally structured healthcare setting	Examples of key professionals involved in implementation of context-specific strategies
Timely antibiotic management Who? When?	-	Prompt initiation of AM therapy if bacterial infection suspected Avoid using AMs when not indicated (ie. URTI)	Use care bundles supported by electronic prescribing and automated algorithms	Develop regulatory approaches to deal with counterfeit or poor quality antibiotics	 First contact AM prescribers (community and hospital) Pharmacists (community and hospital)
	-	Inclusion of guidance on clinical syndromes that do and do not require AM therapy in clinical	Use strategies such as delayed prescribing for patients unlikely to benefit from immediate antibiotic	Train community pharmacists and community and hospital health workers on rational	 Regulators Public health practitioners and organizations

Antimicrobial Stewardship for neonates and children: A Global Approach

Appropriate selection of antibiotics What?

Julia Bielicki¹, Rebecca Lundin², Sanjay Patel³, Stéphane Paulus^{4,5}

- Selection of appropriate AM regimens
- Selection of AMs on basis of local antibiograms and guidelines with preference given to antibiotics less likely to promote the emergence of resistance
- Develop and use rapid microbiological diagnostics and biomarkers
- Regular automated review of local microbiology resistance data to update empiric AB prescribing guidelines

Specify responsibility for and mechanisms to ensure guidelines are available, relevant to context and up to date

Establish surveillance activities to collect regional or local microbiological data

- First contact AM prescribers (community and hospital)
- AM experts, e.g. infectious diseases specialists
- Pharmacists (community and hospital)
- Microbiologists
- Epidemiologists and public health practitioners

Appropriate administration and de- escalation of antibiotics How?	-	Optimise dosing (ie never use "low dose") Review microbiology and clinical status at 48- 72 hours to decide: stop, switch, continue, modify Administer short antibiotic courses as appropriate Therapeutic drug monitoring Appropriate prophylactic use of AMs	Restrict formulary for empiric treatment at 48 hours for inpatients to encourage review of prescriptions and de- escalation Include recommendations for iv to oral switching and outpatient parenteral antibiotic therapy (OPAT) in guidelines	Ensure availability of paediatric formulations to overcome need for manipulation of AMs e.g. solid forms, and to ensure appropriate dosing Use antimicrobial batching to maximize use of antimicrobials for a specific duration and at a specific dose	-	Pharmacists (community and hospital) First contact AB prescribers (community and hospital) AB champions who can provide AS interventions AM experts, e.g. infectious diseases specialists Microbiologists Pharmaceutical companies (including generics manufacturers)
Use of expertise and resources Resources	-	Establishment of AS teams/committees and identification of AS champions Administrative and leadership support Collaboration with manufacturers	Form stewardship teams building on locally available expertise and with support from regulatory and management bodies	Identify local antibiotic champion and provide training ("knowledge brokers")	-	AB champions as lead All of the above Healthcare managers, administrators and funders
Continuous and transparent monitoring of antibiotic use and antimicrobial resistance Information	-	Audit and feedback Education Prospective monitoring of relevant outcomes Benchmarking	Ensure on-going, prospective and openly accessible (at local or higher level) monitoring of key parameters to identify areas for intervention Involve prescribers in the	Use run charts and other simple devices to provide immediate feedback on the success of implementing key stewardship activities Foster co-operation and data sharing between	- - -	Microbiologists Pharmacists (community and hospital) Epidemiologists Public health practitioners Regulatory bodies